
4-5 Notes:  Integration by Substitution   Name _____________________ 

Calculus AB 

 

Do you remember how you did this on the 4.1-4.3 Review Worksheet? 
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We worked this by simplifying first, then pulled the constant out and integrated from 

there.  There is an easier way.  It is called the “change of variables approach”, but we’ll 

call it substitution. 

Change of Variables (Substitution) 
If )(xgu = , then dxxgdu )(′= .  Therefore, 

∫ ∫ +==′ CuFduufdxxgxgf )()()())((  

 

Guidelines for Making a Change of Variables 
 

• Choose a substitution )(xgu = .  Usually, it is best to choose the inner part of a 

composition functions, such as a quantity raised to a power. 

• Compute dxxgdu )(′= . 

• Rewrite the integral in terms of the variable u . 

• Find the resulting integral in terms of u . 

• Replace u  by )(xg  to obtain an antiderivative in terms of x . 

• Check your answer by differentiating. 
 

 

 

The General Power Rule for Integration 
If g  is a differentiable function of x , then 
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Equivalently, if )(xgu = , then 
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Re-do  ∫ dx
x3 3

2
 using substitution. 
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Example 5)  ( )∫ dxx5cos5  
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Example 10)  ∫ + dxxx 12  
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Change of Variables for Definite Integrals 
If the function )(xgu =  has a continuous derivative on the closed interval [ ]ba,  and f  is 

continuous on the range of g , then ∫∫ =′
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Integration of Even and Odd Functions 
Let f  be integrable on the closed interval [ ]aa,− .   

1)  If f  is an even function, then ∫∫ =
−
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• Symmetric with respect to y-axis 

• Test by using:  )()( xfxf =−  

 

2)  If f  is an odd function, then 0)( =∫
−

a

a

dxxf . 

• Symmetric with respect to origin 

• Test by using:  )()( xfxf −=−  
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